

Domain-Aware Self-Supervised Learning for Cell-Level Malaria Classification

Label Efficiency, Cross-Dataset Generalization, and Clinical Interpretability

Cyrille Brice FOMAZOU TCHINDA^{1,4*}, Dieudonne ESSOLA², Florence OFFOLE², Arthur Brice AZANGUE³, Armel ESSOMBA⁴, Francois Anicet ONANA AKOA^{4,5}

¹Lab. Methods, ENSPD, U. Douala ²Lab. Mechanics, ENSPD ³Lab. Electronics, U. Dschang ⁴DSWB-DGH, Cameroon ⁵Hopital General de Douala, FMSP *Contact: fomazou_tchinda@enspd-udo.cm

ABSTRACT

Accurate malaria diagnosis requires expert microscopy skills that are critically scarce where disease burden is highest. While supervised deep learning shows promise for automated cell classification, it demands large annotated datasets that are costly to create. We address this through contrastive self-supervised learning using an enhanced SimCLR framework. Our approach achieves **96.3%** accuracy using only **10%** of labeled data, reducing annotation requirements by 90% while maintaining performance within 0.7% of full supervision. The method demonstrates superior cross-dataset generalization (AUC = 0.777 on BBBC041) and provides efficient interpretability through systematic evaluation of eight attribution methods.

Keywords: Self-supervised learning, SimCLR, Malaria, Label efficiency, Interpretability

1. BACKGROUND

Global Malaria Crisis

- 249M cases, 608K deaths (2023)
- 95% burden in Sub-Saharan Africa
- Requires expert microscopy
- Critical shortage of microscopists

The Annotation Problem

- DL needs thousands of labels
- Expert annotation scarce
- Deployment barrier

Research Question

Can SSL reduce annotation needs while maintaining accuracy?

2. METHODOLOGY

Pipeline Overview

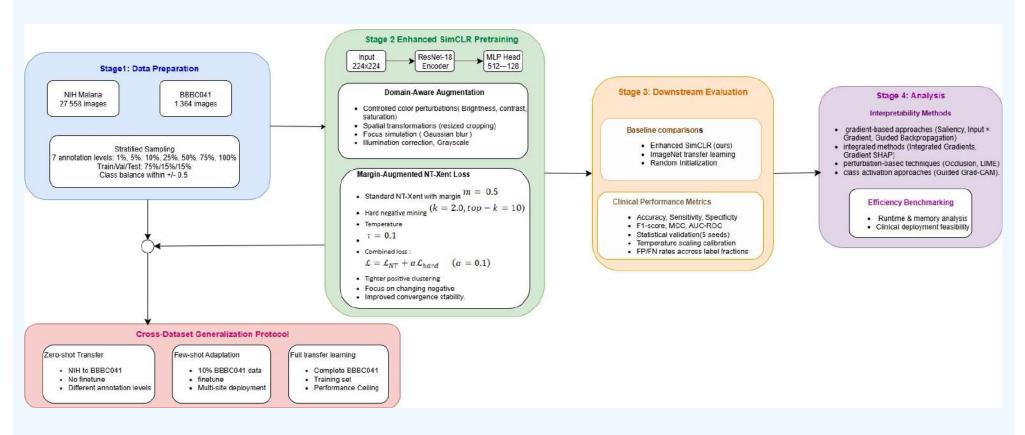


Figure 1. SSL pipeline

SimCLR Framework

- ResNet-18 + 2-layer MLP
- Margin-augmented NT-Xent (m=0.5)
- Hard negative mining
- Domain-aware augmentations

Datasets

NIH: 27,558 cellsBBBC041: 1,364 cells

Labels: 1%, 5%, 10%, 25%, 50%, 75%, 100%

3. REPRESENTATION QUALITY

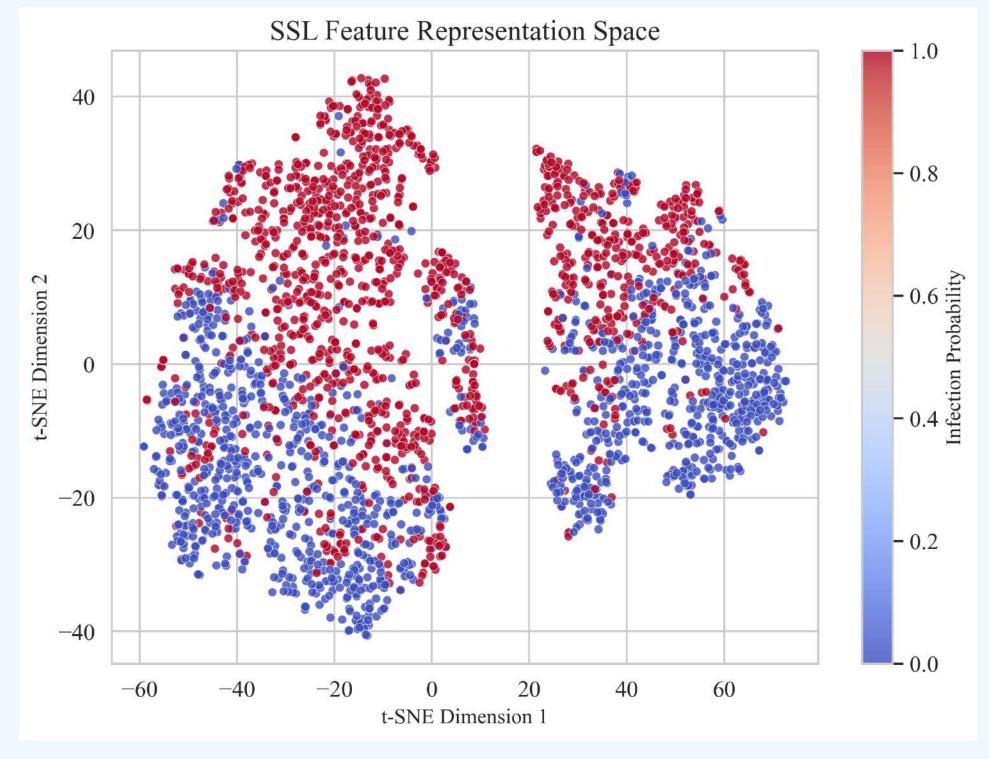


Figure 2. t-SNE visualization

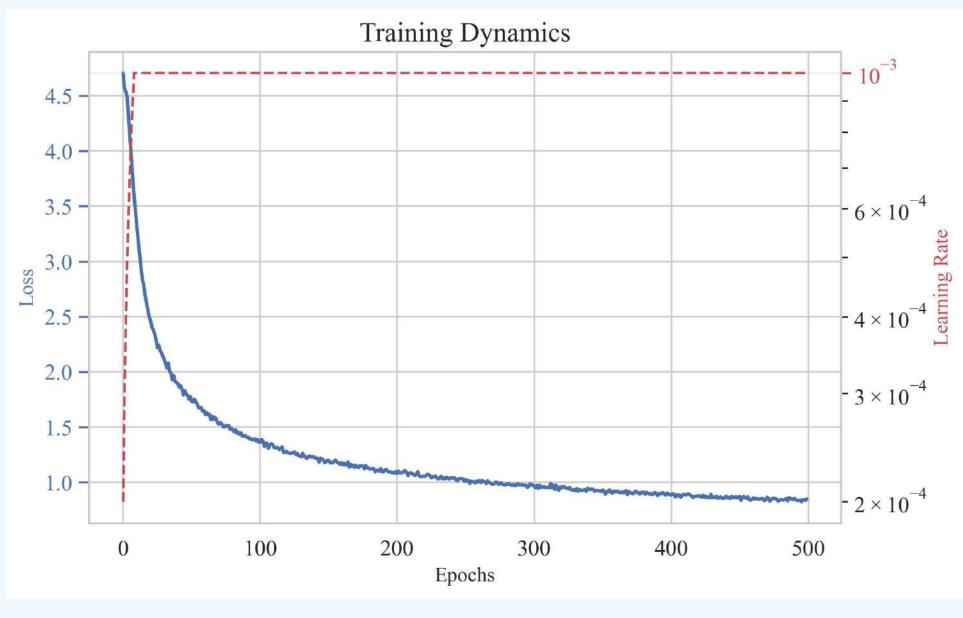


Figure 3. Training convergence

4. LABEL EFFICIENCY

Performance vs. Annotation Level

Method	1%	10%	100%
Random			
ImageNet			97.1
SimCLR	91.8	96.3	97.0

Table 1. Accuracy (%)

Key Finding

90% annotation reduction with 96.3% accuracy at 10% labels. Only 0.7% below full supervision.

Confusion Matrix (10% Labels)

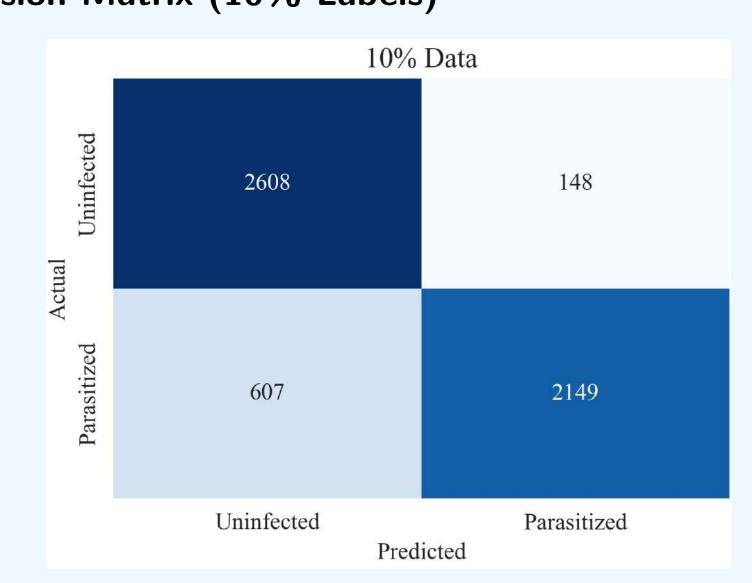


Figure 4. High precision

Clinical Metrics

Sensitivity: 94.6%Specificity: 78.0%

■ F1 Score: 95.4%

5. COMPARISON WITH SSL METHOD

Recent SSL Approaches for Malaria

Metric	Ours	M-M	Fu
Method	SimCLR+	SimSiam	BYOL
Dataset	27.5K	15.3K	30K
10% Acc	96.3	_	_
Peak Acc	97.0	89.0	97.8
X-Dataset	0.777	Limited	
Deploy	Yes	Partial	No

Table 2A. SSL comparison (M-M = Mancebo-Martín)

Key Differentiators

- Label efficiency: Only work evaluating systematic annotation reduction
- Cross-dataset: Rigorous external validation
- **Deployment focus:** Calibration + interpretability + efficiency

Clinical Translation

90% annotation reduction exceeds prior SSL work, directly addressing expert scarcity in endemic regions.

6. CROSS-DATASET RESULTS

BBBC041 External Validation

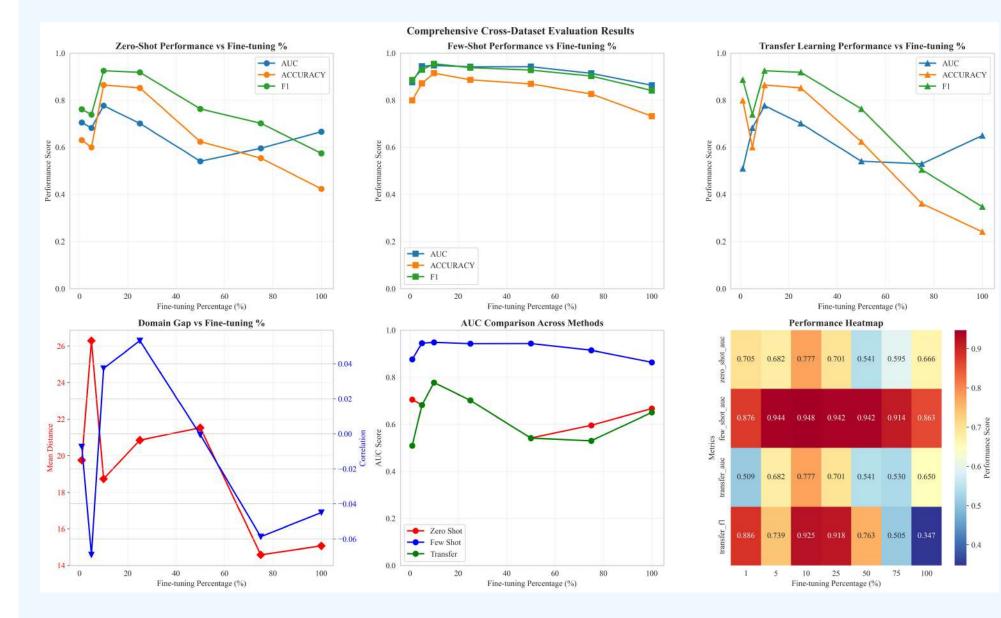


Figure 5. Transfer performance

Train	Zero	Few	Full
1%	0.705	0.876	79.8
10%	0.777	0.948	86.4
25%	0.701	0.942	85.2
100%	0.666	0.863	24.1

Table 2B. AUC (Zero/Few) & Acc (%)

Key Insight

10–25% training prevents overfitting. **10% outperforms full supervision** on external data.

CONTACT

Corresponding author

Cyrille Brice FOMAZOU TCHINDA
Laboratory of Methods, ENSPD, University of Douala,
Cameroon

Phone: +237 695 71 80 58
Email: fomazou_tchinda@enspd-udo.cm

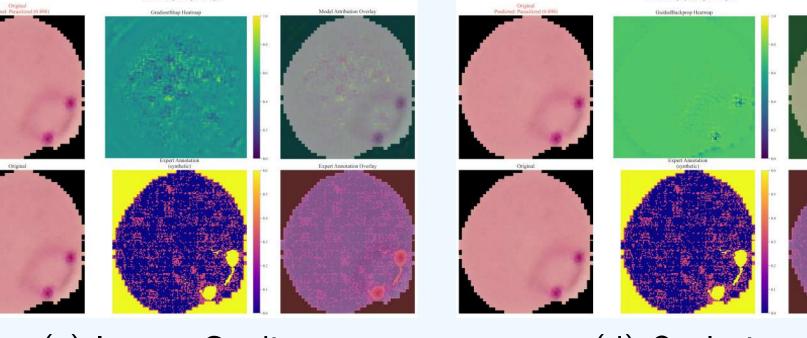
7. INTERPRETABILITY

XAI Method Comparison

Method	Time	Corr	Clin
Saliency	0.03	-0.05	Poor
G-SHAP	0.15	0.01	Good
Guided BP	0.09	0.01	Fair
InputXG	0.09	-0.02	Fair
Int. Grad	0.47	0.83	Excl
Occlusion	10.8	0.01	Good

Table 3. Time (s) & correlation

Visual Examples



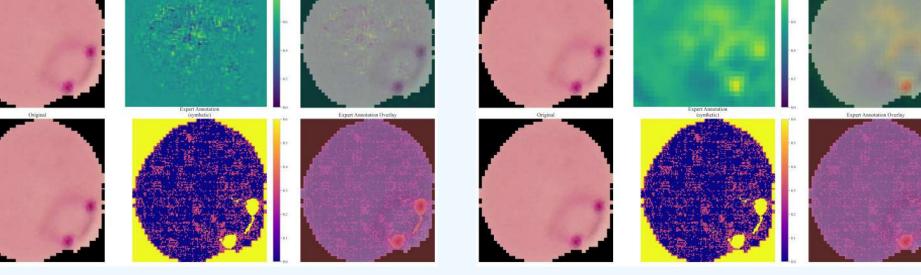
(c) Input×Gradient

InputXGradient vs Expert Analysis

InputXGradient Heatmap

Model Attribution Overlay

Model Attribution Overl



(e) Integrated Gradients

Integrated Gradients vs Expert Analysis

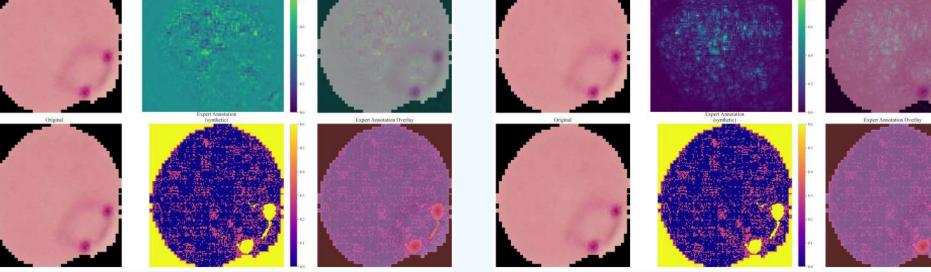


Figure 5. Comparison of attribution methods showing trade-offs between biological fidelity, spatial precision, and computational efficiency. Gradient SHAP and Input \times Gradient balance interpretability and speed; Integrated Gradients provides detailed attributions at higher cost.

Recommendations

■ **Grad-SHAP:** Fast (0.15s)

Int. Grad: High fidelity

Both clinically suitable

8. CONCLUSIONS

Main Contributions

- 1 90% annotation reduction
- 2 96.3% accuracy at 10% labels
- Better generalization
- 4 CPU-compatible
- 5 Systematic XAI evaluation

Clinical Impact Enables scalable /

Enables scalable AI diagnosis in resource-limited settings while maintaining accuracy and interpretability.

Future Work

- Multi-stage classification
- Mobile microscopy integration
- Prospective validation

REFERENCES

- 1 WHO (2024). World Malaria Report.
- 2 Snow et al. (2005). Nature.
- 3 Pandey et al. (2023). Cureus.4 Kavanaugh et al. (2021).
- Diagnostics.

 5 Oladipo et al. (2022). Ann.
- Med. Surg.

 6 Mukadi-Kaningu et al. (2024).
- MalariaWorld J.

 7 Khandelwal et al. (2020). J.
- Healthc. Eng.

 8 Rajaraman et al. (2018). Peer
- 9 Mujahid et al. (2024). Sci.
- Rep.

 10 Boit & Patil (2024).

Tools.

Boit & Patil (2024). Diagnostics.

12 Tan & Liang (2023). Sci. Rep.

13 Chen et al. (2020). SimCLR.

- Devi et al. (2018). Multimedia
 - a 25
- 24 Ribeiro et al. (2016). KDD.25 Lundberg & Lee (2017).

ICML.

CVPR.

14 He et al. (2020). MoCo.

15 Fu et al. (2023). Front. Med.

16 Mancebo-Martín et al. (2024).

18 Kazeminia et al. (2024). arXiv.

19 Tian et al. (2020). NeurIPS.

20 Caron et al. (2020). SwAV.

23 Selvaraju et al. (2017). ICCV.

21 Guo et al. (2017). ICML.

22 Minderer et al. (2021).

17 Ciga et al. (2022). Mach.

Learn. Appl.

NeurIPS.

NeurIPS.

- NeurIPS.

 26 Ljosa et al. (2012). BBBC041.
- 27 NIH Malaria Datasets.
- Min Maiaria Datasets.

